Dual versus primal-dual interior-point methods for linear and conic programming
نویسنده
چکیده
We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infeasibility/unboundedness detectors. Dedicated to Clovis Gonzaga on his 60th birthday. ∗School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853, USA ([email protected]). This author was supported in part by NSF through grant DMS-0209457 and ONR through grant N00014-02-1-0057.
منابع مشابه
ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملGeneralization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form
We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...
متن کاملPrimal-dual Interior-Point Methods with Asymmetric Barriers
In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible to develop very efficient optimization met...
متن کاملOn implementing a primal-dual interior-point method for conic quadratic optimization
Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 111 شماره
صفحات -
تاریخ انتشار 2008